Matemática Discreta: relaciones

Grado en Ingeniería
Asignatura de Matemática Discreta

UDIMA

Contenidos

Relaciones binarias

- Relaciones de equivalencia [Aritmética modular]
 - Clases de equivalencia
 - Conjunto cociente
- Relaciones de orden [Organización de tareas en un proyecto]
 - Conjuntos parcial y totalmente ordenados
 - Diagramas de Hasse
 - Elementos extremales

Relaciones binarias

Intuitivamente dos objetos están relacionados si satisfacen un cierto criterio (y no lo están si no satisfacen dicha regla).

Ejemplo: Dadas dos personas podemos establecer la relación "ser hijo/a de".

Queremos estudiar relaciones *binarias* entre los elementos de un conjunto V y los elementos de otro W (que puede ser el mismo V).

Las relaciones binarias se usan para estudiar objetos:

- Congruencias en aritmética modular (Tema 5).
- Teoría de lenguajes y máquinas de estados finitos.
 Se busca encontrar máquinas con el mínimo número de estados internos que realicen una cierta tarea.
- Organización de tareas en un proyecto complejo: tenemos muchas tareas que dependen unas de otras. ¿Cómo realizarlas de manera secuencial?
- Las funciones son un tipo particular de relaciones binarias.

Relaciones binarias entre dos conjuntos

Definición 1

Una **relación binaria** \mathcal{R} del conjunto V al conjunto W es un subconjunto del producto cartesiano $V \times W$:

$$V \times W = \{(v, w) \mid (v \in V) \land (w \in W)\}.$$

Luego $\mathcal{R} \subseteq V \times W$. El dominio de \mathcal{R} es:

$$\operatorname{Dom} \mathcal{R} \ = \ \{v \in V \mid (v, w) \in \mathcal{R} \quad \text{para algún } w \in W\}$$
 .

y la imagen de \mathcal{R} es:

$$Imag \mathcal{R} = \{ w \in W \mid (v, w) \in \mathcal{R} \mid para algún v \in V \}.$$

Notación: Si $(v, w) \in \mathcal{R}$, lo escribiremos $v\mathcal{R}w$.

Ejemplo: Sean $A = \{2,4,6\}$ y $B = \{1,2,3,4,5,6\}$ y la relación "menor que" (<) entre A y B. Entonces

$$\mathcal{R} = "<" = \{(2,3), (2,4), (2,5), (2,6), (4,5), (4,6)\}$$

y e.g.,
$$(2,4) \in \mathcal{R} = "<" \Rightarrow 2\mathcal{R}4 = 2 < 4$$
.

Relaciones binarias en un conjunto

Definición 2

Una relación binaria \mathcal{R} sobre un conjunto V es un subconjunto del producto cartesiano $V \times V$ Luego $\mathcal{R} \subseteq V \times V$. El dominio de \mathcal{R} es:

$$\operatorname{Dom} \mathcal{R} = \{v \in V \mid (v, w) \in \mathcal{R} \mid \operatorname{para algún} w \in V\}$$

y la imagen de \mathcal{R} es:

$$\operatorname{Imag} \mathcal{R} \ = \ \{w \in V \mid (v,w) \in \mathcal{R} \quad \text{para algún } v \in V\} \, .$$

Ejemplo: Sea $A = \{2, 4, 6\}$ y la relación "menor que" (<) sobre A. Entonces

$$\mathcal{R} = "<" = \{(2,4), (2,6), (4,6)\}.$$

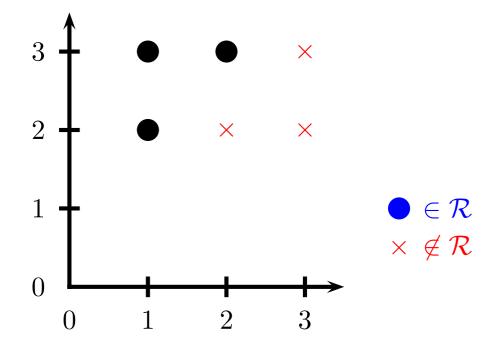
Observación importante: una función $f: A \to B$ es una relación entre los conjuntos A y B tal que a cada elemento $x \in \text{Dom}(f)$ le corresponde un <u>único</u> elemento de B (i.e., f(x)).

Representación gráfica de una relación

Sean los conjuntos $A=\{1,2,3\}$ y $B=\{2,3\}$ y la relación "menor que" (<). Entonces

$$\mathcal{R} = \{(1,2), (1,3), (2,3)\}.$$

Representación cartesiana:

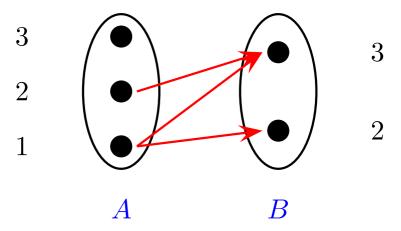


Representación gráfica de una relación

$$A = \{1, 2, 3\}, B = \{2, 3\}$$
 y $\mathcal{R} =$ "<". Entonces,

$$\mathcal{R} = \{(1,2), (1,3), (2,3)\}.$$

Representación con diagramas de Venn:



Matriz de adyacencia de \mathcal{R} :

Sean $V = \{v_1, v_2, \dots, v_{|V|}\}$ y $W = \{w_1, w_2, \dots, w_{|W|}\}$. La entrada (i, j) de $A_{\mathcal{R}}$ es 1 si $v_i \mathcal{R} w_j$ y es 0 en caso contrario.

$$V = \{1, 2, 3\}, \quad W = \{2, 3\}, \quad A_{<} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Representación gráfica de una relación sobre ${\cal V}$

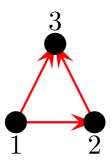
$$A = \{1, 2, 3\}$$
 y $\mathcal{R} = "<"$. Entonces,

$$\mathcal{R} = \{(1,2), (1,3), (2,3)\}.$$

Grafo orientado $G_{\mathcal{R}}$ asociado a \mathcal{R} :

Los vértice de $G_{\mathcal{R}} = (V, E)$ son los elementos del conjunto V sobre el que está definida la relación \mathcal{R} . El conjunto de aristas (dirigidas) está dado por

$$E = \{(v_i, v_j) \in V \times V \mid v_i \mathcal{R} v_j\}.$$



Ejemplos:

• Sean $V = \{$ ciudades de España $\}$, $W = \{$ comunidades autónomas $\}$ y definimos \mathcal{R} mediante la siguiente regla: $v\mathcal{R}w$ si la ciudad v está ubicada en la comunidad w.

Entonces, Lérida $\mathcal R$ Cataluña, La Coruña $\mathcal R$ Galicia, Fuenlabrada $\mathcal R$ Madrid, etc.

- Sea $V = \{1, 2, 3, 4\}$ y sea la relación \mathcal{R} definida por $v\mathcal{R}w$ si v divide a w. Representar \mathcal{R} mediante la matriz de adyacencia y el grafo orientado asociado.
- Si $V = \{x \in \mathbb{R} \mid -2 \le x \le 2\}$ y $x\mathcal{R}y$ si $x^2 + y^2 = 1$, representar \mathcal{R} .
- Calcular el dominio, la imagen y la representación matricial de las siguientes relaciones:
 - 1. $V = \{1, 2, 3, 4, 8\}, W = \{1, 4, 6, 9\}$ y $v\mathcal{R}w$ si v divide a w.
 - 2. $V = W = \{1, 2, 3, 4\}$ y $v\mathcal{R}w$ si $v \le w + 1$.
 - 3. $V = W = \mathbb{R} \text{ y } v\mathcal{R}w \text{ si } w = |v|$.
 - 4. $V = W = \{1, 2, 3, 4\}$ y $vRw \text{ si } v \leq w$.

Relación inversa y relación complementaria

Definición 3

Dada la relación \mathcal{R} sobre V, se define su **relación inversa** \mathcal{R}^{-1} como la relación en V definida como $(v_1, v_2) \in \mathcal{R}^{-1} \Leftrightarrow (v_2, v_1) \in \mathcal{R}$ ó bien como $v_1 \mathcal{R}^{-1} v_2 \Leftrightarrow v_2 \mathcal{R} v_1$.

- El grafo orientado $G_{\mathcal{R}^{-1}}$ asociado a la relación inversa \mathcal{R}^{-1} se obtiene del grafo orientado $G_{\mathcal{R}}$ asociado a \mathcal{R} cambiando el sentido de todas las aristas.
- La matriz de adyacencia $A_{\mathcal{R}^{-1}}$ asociada a la relación inversa \mathcal{R}^{-1} es la transpuesta de la matriz $A_{\mathcal{R}}$ asociada a \mathcal{R} :

$$A_{\mathcal{R}^{-1}} = A_{\mathcal{R}}^T.$$

Definición 4

Dada la relación \mathcal{R} sobre V, se define su **relación complementaria** $\overline{\mathcal{R}}$ como la relación en V definida como $(v_1,v_2)\in\overline{\mathcal{R}} \Leftrightarrow (v_1,v_2)\not\in\mathcal{R}$.

• La matriz de adyacencia $A_{\overline{R}}$ asociada a la relación complementaria \overline{R} se obtiene de la matriz $A_{\mathcal{R}}$ asociada a \mathcal{R} intercambiando $1 \leftrightarrow 0$.

Operaciones con relaciones

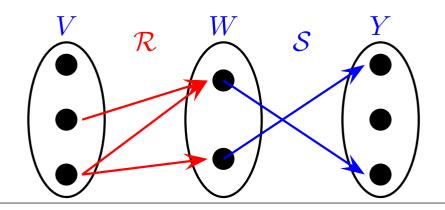
Las relaciones son subconjuntos del conjunto $V \times W$, luego podemos efectuar las mismas operaciones que con un conjunto cualquiera

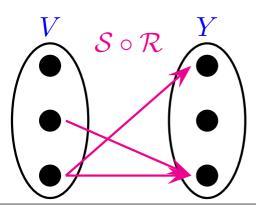
Ejemplo: Si $\mathcal{R}_1 = \{(1,2), (1,3), (2,2)\}$ y $\mathcal{R}_2 = \{(1,2), (1,3), (2,4)\}$, entonces:

- $\mathcal{R}_1 \cup \mathcal{R}_2 = \{(1,2), (1,3), (2,2), (2,4)\}$
- $\mathcal{R}_1 \cap \mathcal{R}_2 = \{(1,2), (1,3)\}$
- $\bullet \ \mathcal{R}_1 \setminus \mathcal{R}_2 = \{(2,2)\}$
- $\mathcal{R}_1 \triangle \mathcal{R}_2 = \{(2,2), (2,4)\}$

Definición 5

Sea $\mathcal R$ una relación de V en W y sea $\mathcal S$ una relación de W en Y. La **relación compuesta** $\mathcal S\circ\mathcal R$ de V en Y es un subconjunto del producto cartesiano $V\times Y$ tal que $v(\mathcal S\circ\mathcal R)y$ con $v\in V$ e $y\in Y$ si existe algún $w\in W$ tal que $v\mathcal Rw$ y $w\mathcal Sy$.





Composición de relaciones

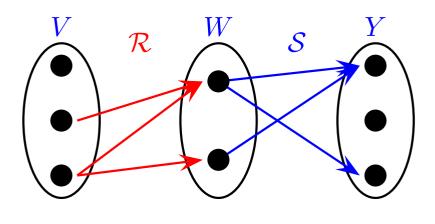
Proposición 6 Si $A_{\mathcal{R}}$ es la matriz de adyacencia de la relación \mathcal{R} de V en W y $A_{\mathcal{S}}$ es la matriz de adyacencia de la relación \mathcal{S} de W en Y, la matriz de adyacencia $A_{\mathcal{S} \circ \mathcal{R}}$ de la relación compuesta $\mathcal{S} \circ \mathcal{R}$ viene dada por:

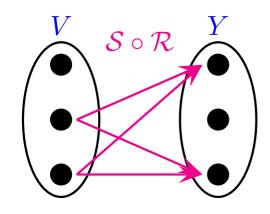
$$A_{\mathcal{S} \circ \mathcal{R}} = A_{\mathcal{R}} \odot A_{\mathcal{S}},$$

donde el producto o es el producto booleano de matrices.

- Las entradas de las matrices a multiplicar son variables binarias 0 y 1.
- Al multiplicar las matrices la suma y la multiplicación de dichas variables binarias siguen las reglas de las operaciones booleanas.
- La suma booleana de dos variables binarias es siempre 1 a menos que ambas sean 0 (OR lógico ∨).
- El producto booleano de dos variables binarias es siempre 0 a menos que ambas sean 1 (AND lógico ∧).
- La matriz producto tiene las entradas binarias.
- $v(S \circ R)y$ si y sólo si $(A_{S \circ R})_{v,y} = 1$. Esta condición se cumple si y sólo si existe algún $w \in W$ tal que $(A_R)_{v,w} = 1$ y $(A_S)_{w,y} = 1$.

Ejemplo





$$A_{\mathcal{R}} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$A_{\mathcal{S}} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A_{S \circ \mathcal{R}} = A_{\mathcal{R}} \odot A_{\mathcal{S}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Propiedades de las relaciones sobre V

Definición 7

Una relación \mathcal{R} es **reflexiva** si para todo $v \in V$ se cumple que $v\mathcal{R}v$.

- El digrafo $G_{\mathcal{R}}$ de una relación reflexiva debe tener un bucle en cada vértice.
- La matriz de adyacencia $A_{\mathcal{R}}$ de una relación reflexiva debe tener todos sus elementos diagonales iguales a 1.

Definición 8

Una relación \mathcal{R} es **anti-reflexiva** si para todo $v \in V$ se cumple que $v\overline{\mathcal{R}}v$.

- El digrafo $G_{\mathcal{R}}$ de una relación anti-reflexiva no debe tener ningún bucle.
- La matriz de adyacencia $A_{\mathcal{R}}$ de una relación anti-reflexiva debe tener todos sus elementos diagonales iguales a 0.
- Importante: Una relación no reflexiva no tiene por qué ser anti-reflexiva.

Propiedades de las relaciones sobre V

Definición 9

Una relación \mathcal{R} es **simétrica** si $\mathcal{R} = \mathcal{R}^{-1}$, es decir, si $v\mathcal{R}w \Rightarrow w\mathcal{R}v$.

• Una relación es simétrica si y sólo si su matriz de adyacencia $A_{\mathcal{R}}$ es simétrica $A_{\mathcal{R}}^T = A_{\mathcal{R}}$.

Definición 10

Una relación \mathcal{R} es anti-simétrica si $(v_1 \mathcal{R} v_2) \wedge (v_2 \mathcal{R} v_1) \Rightarrow v_1 = v_2$.

- La matriz de adyacencia $A_{\mathcal{R}}$ de una relación anti-simétrica debe ser tal que si $(A_{\mathcal{R}})_{i,j} = 1$ para algún $i \neq j$, entonces $(A_{\mathcal{R}})_{j,i} = 0$.
- No hay condición alguna sobre los elementos diagonales.

Propiedades de las relaciones sobre V

Definición 11

Una relación \mathcal{R} es transitiva si $(v_1 \mathcal{R} v_2) \wedge (v_2 \mathcal{R} v_3) \Rightarrow v_1 \mathcal{R} v_3$.

Proposición 12 Una relación \mathcal{R} es transitiva si y sólo si $\mathcal{R}^n \subseteq \mathcal{R}$ para $n \in \mathbb{N}$. La potencia de una relación \mathcal{R}^n se define recursivamente como sigue:

$$\mathcal{R}^1 = \mathcal{R}$$
, $\mathcal{R}^n = \mathcal{R} \circ \mathcal{R}^{n-1}$.

Corolario 13 Una relación \mathcal{R} es transitiva si y sólo si para toda entrada no nula $(A_{\mathcal{R}^2})_{i,j}=1$ de la matriz de adyacencia de \mathcal{R}^2 , la correspondiente entrada de la matriz de adyacencia de \mathcal{R} es también no nula $(A_{\mathcal{R}})_{i,j}=1$.

Relaciones de equivalencia

Definición 14

Una relación \mathcal{R} sobre el conjunto V es una **relación de equivalencia** si es reflexiva, simétrica y transitiva.

Notación: Si \mathcal{R} es una relación de equivalencia, $a\mathcal{R}b$ se suele denotar por $a \equiv b \pmod{\mathcal{R}}$.

Definición 15

Sea $\mathcal R$ una relación de equivalencia sobre V. El conjunto de todos los elementos relacionados con un cierto $v \in V$ se denomina clase de equivalencia de v y se denota por $[v]_{\mathcal R}$ ó simplemente por [v]. Luego

$$[v]_{\mathcal{R}} = \{ w \in V \mid v\mathcal{R}w \} .$$

Cualquier elemento $w \in [v]_{\mathcal{R}}$ (en particular, v) se denomina **representante** de la clase de equivalencia $[v]_{\mathcal{R}}$.

Problema 1

Sea $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ y tal que $a\mathcal{R}b \Leftrightarrow a+b$ es par. Demostrar que es una relación de equivalencia y calcular sus clases de equivalencia.

Conjunto cociente

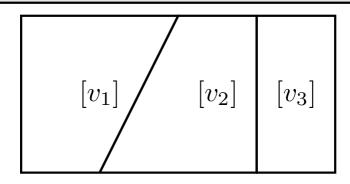
Teorema 16 Sea $\mathcal R$ una relación de equivalencia sobre V. Entonces dos clases de equivalencia de $\mathcal R$ o bien son iguales o bien son disjuntas. Es decir:

(1)
$$[a] = [b] \Leftrightarrow a\mathcal{R}b$$

(2)
$$[a] \neq [b] \Rightarrow [a] \cap [b] = \emptyset$$

Nota: Las clases de equivalencia [v] no son vacías. ¿Por qué?

Teorema 17 Sea $\mathcal R$ una relación de equivalencia sobre V. Entonces dicha relación determina una partición del conjunto V.



Conjunto cociente

Teorema 18 Sea \mathcal{R} una relación de equivalencia sobre V. Entonces las clases de equivalencia de \mathcal{R} constituyen una partición de V. Recíprocamente, dada una partición $\{V_1,V_2,\ldots\}$ de V, existe una relación de equivalencia \mathcal{R} tal que sus clases de equivalencia son los conjuntos V_i .

Definición 19

Sea $\mathcal R$ una relación de equivalencia sobre V. El conjunto de todas las clases de equivalencia de $\mathcal R$ se denomina **conjunto cociente de** A **por** $\mathcal R$ y de denota por $V/\mathcal R$:

$$V/\mathcal{R} = \{ [v]_{\mathcal{R}} \mid v \in V \} .$$

Problemas

Problema 2

Demostrar que las siguientes relaciones son de equivalencia. Encontrar las correspondientes clases de equivalencia y el conjunto cociente V/\mathcal{R} :

- 1. $V=\mathbb{Z}$ y $v\mathcal{R}w$ si |v-w| es múltiplo de 2.
- 2. $V=\mathbb{Z}$ y $v\mathcal{R}w$ si $v^2-w^2=v-w$. Describir la clase de equivalencia de 2005.
- 3. $V = \mathbb{R}^2$ y $(x, y)\mathcal{R}(u, w)$ si xy = uw.
- 4. $V = \mathbb{R}^2 \ \mathbf{y}(x,y) \mathcal{R}(u,w) \ \mathbf{si}(x-y)(x+y) = (u-w)(u+w).$
- 5. $V = \mathbb{R}^2 \ \mathsf{y}(x,y) \mathcal{R}(u,w) \ \mathsf{si} \ x^2 + y^2 = u^2 + w^2$.

Problema 3

Sea la relación $\mathcal R$ definida sobre $\mathbb N \times \mathbb N$ de manera que $(a,b)\mathcal R(c,d)$ si y sólo si a+b=c+d. Demostrar que $\mathcal R$ es una relación de equivalencia y que existe una biyección entre el conjunto cociente $(\mathbb N \times \mathbb N)/\mathcal R$ y $\mathbb N$.

Problema 4

En $\mathbb{R}_2 = \mathbb{R} \times (\mathbb{R} \setminus \{0\})$ se define la relación $(a,b)\mathcal{R}(c,d)$ si y sólo si ad = bc. Demostrar que \mathcal{R} es una relación de equivalencia y encontrar las clases de equivalencia y el conjunto cociente.

Problemas

Problema 5

Una relación $\mathcal R$ definida en V es circular si verifica

$$(a\mathcal{R}b) \wedge (b\mathcal{R}c) \Rightarrow c\mathcal{R}a$$
.

Demostrar que una relación ${\mathcal R}$ es de equivalencia si y sólo si es circular y reflexiva.

Problema 6

Una relación $\mathcal R$ definida en V es débilmente transitiva si para todo $a,b,c,d\in V$ se verifica que

$$(a\mathcal{R}b) \wedge (b\mathcal{R}c) \wedge (c\mathcal{R}d) \Rightarrow a\mathcal{R}d$$
.

Discutir la veracidad o falsedad de las siguientes afirmaciones:

- (1) Toda relación simétrica y débilmente transitiva es transitiva.
- (2) Toda relación reflexiva, simétrica y débilmente transitiva es de equivalencia.

Relación de orden parcial

Definición 20

Una relación sobre un conjunto V se denomina **orden parcial** (o **relación de orden**) si es reflexiva, antisimétrica y transitiva.

Notación: Las relaciones de orden se suelen denotar por el símbolo \leq .

Definición 21

Un conjunto V equipado con una relación de orden \preceq se denomina conjunto parcialmente ordenado (V, \preceq) (o poset).

Problema 7

Probar que la relación \leq es una relación de orden en el conjunto $\mathbb N$.

Nota: En una relación de orden parcial \leq nada garantiza que dos elementos cualquiera sean comparables (al contrario de lo que ocurre con e.g. \leq en \mathbb{N}).

Relación de orden total

Definición 22

Sea (V, \preceq) un conjunto parcialmente ordenado. Dos elementos $a, b \in V$ son **comparables** si ó bien $a \preceq b$ ó bien $b \preceq a$. Si no se verifican ninguna de estas condiciones, dichos elementos se denominan **no comparables**.

Definición 23

Un conjunto parcialmente ordenado (V, \preceq) está **totalmente ordenado** cuando cualquier par de elementos $a,b \in V$ son comparables. Se dice entonces que (V, \preceq) es un conjunto **totalmente ordenado** (o cadena).

Problema 8

Probar que la relación $\mathcal R$ sobre $\mathbb N$ definida como $a\mathcal Rb$ si y sólo si a divide a b es una relación de orden.

Ejemplo

Problema 9

Determinar si las relaciones representadas por las siguientes matrices de adyacencia son relaciones de orden parcial o total. Para aquellos casos que representen relaciones de orden, dibujar el digrafo asociado y discutir cómo se podría simplificar la representación.

$$A_{1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad A_{3} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

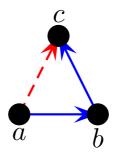
$$A_4 = \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Diagramas de Hasse, 1926

El digrafo asociado a una relación de orden \leq se puede simplificar eliminando las redundancias derivadas de las propiedades de orden

Algoritmo para obtener el diagrama de Hasse del orden parcial \leq :

- 1. Como \leq es reflexiva, hay un bucle en cada vértice. Eliminar todos los bucles.
- 2. La transitividad de \leq se refleja en la posible existencia de subgrafos del tipo:



Si $a \leq b$ y $b \leq c$, eliminar la arista superflua asociada a $a \leq c$.

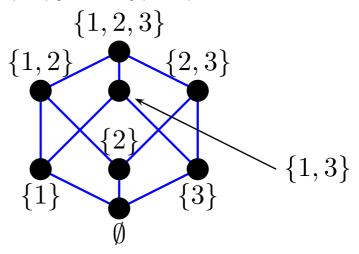
3. Elegimos que todas las aristas apunten hacia arriba. Eliminar el sentido de las flechas.

Problema 10

Calcular el diagrama de Hasse de la relación \subseteq sobre el conjunto $\mathcal{P}(A)$ con $A=\{1,2,3\}$.

Elementos extremales

El diagrama de Hasse asociado a $(\mathcal{P}(\{1,2,3\}),\subseteq)$ es



Definición 24

Sea (V, \preceq) un conjunto parcialmente ordenado. $M \in V$ es un **elemento maximal** si para todo $v \in V$, $M \preceq v$ implica que M = v. Es decir, no hay ningún elemento por encima de M. $m \in V$ es un **elemento minimal** si para todo $v \in V$, $v \preceq m$ implica que m = v. Es decir, no hay ningún elemento por debajo de m.

Procedimiento práctico: los elementos maximales y minimales ocupan respectivamente las "cimas" y los "valles" del diagrama.

En el ejemplo anterior, \emptyset es el elemento minimal y A, el maximal.

Elementos extremales

Definición 25

Sea (V, \preceq) un conjunto parcialmente ordenado. $M^\star \in V$ es un **elemento máximo** si $v \preceq M^\star$ para todo $v \in V$. Es decir, M^\star está encima de todos los elementos de V. $m^\star \in V$ es un **elemento mínimo** si $m^\star \preceq v$ para todo $v \in V$. Es decir, m^\star está por debajo de todos los elementos de V.

Nota: Los elementos extremales pueden no existir.

En el ejemplo anterior, \emptyset es el elemento mínimo ya que $\emptyset \subseteq X$ para todo $X \in \mathcal{P}(A)$ y A es el elemento máximo ya que para todo $X \in \mathcal{P}(A)$, $X \subseteq A$.

Teorema 26 El elemento máximo M^* de un conjunto ordenado A, <u>si existe</u>, es único. Además todo elemento máximo es maximal.

Elementos extremales

Definición 27

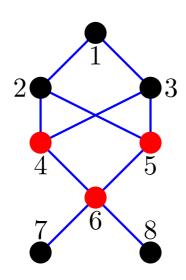
Sea (V, \preceq) un conjunto parcialmente ordenado y $B \subset V$. $u \in V$ es una **cota superior** o **mayorante** de B si $b \preceq u$ para todo $b \in B$. El conjunto de las cotas superiores de B se denota mayor(B).

 $u^{\star} \in V$ es el **supremo** de B si es la menor de las cotas superiores: $u^{\star} = \min(\max(B))$.

 $d \in V$ es una cota inferior o minorante de B si $d \leq b$ para todo $b \in B$. El conjunto de las cotas inferiores de B se denota minor(B).

 $d^{\star} \in V$ es el **ínfimo** de B si es la mayor de las cotas inferiores: $d^{\star} = \max(\min(B))$.

Nota: Los elementos extremales pueden no existir.



$$\begin{aligned} & \max(V) = 1 \,, & \max(V) = 1 \\ & \min(V) = \{7, 8\} \,, & \text{no existe } \min(V) \end{aligned}$$

Sea
$$B = \{4, 5, 6\}$$

$$\mathrm{mayor}(B) = \{1,2,3\}\,, \quad \text{no existe } \sup(B)$$

$$minor(B) = \{6, 7, 8\}, \quad inf(B) = 6$$

Orden total compatible con un orden parcial

Supongamos que un proyecto consta de distintas tareas y que algunas de ellas sólo pueden completarse una vez que otras tareas han concluido. ¿Cómo se puede programar la ejecución secuencial de dichas tareas?

[Este método se desarrolló y usó por la marina de EE.UU. en la construcción del submarino Polaris en los años 50].

- 1. Definimos un orden parcial \leq_P (dependencia de las tareas) de tal modo que:
 - $v_i \leq_P v_j \Leftrightarrow v_j$ necesita que v_i haya acabado.
- 2. Encontramos un orden total \leq_T compatible con \leq_P .

Definición 28

Un orden total \preceq_T es compatible con el orden parcial \preceq_P si para todo $v, w \in V$, $v \preceq_P w$ implica que $v \preceq_T w$.

Orden total compatible con un orden parcial

Algoritmo 29 (Ordenación topológica)

procedure TotalOrder((V, \preceq_P) : conjunto <u>finito</u> parcialmente ordenado)

$$k = 1$$

while
$$V \neq \emptyset$$

begin

 v_k = un elemento <u>minimal</u> de (V, \preceq_P)

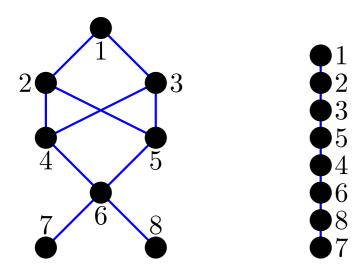
$$V \to V \setminus \{v_k\}$$

$$k \to k+1$$

end

 $v_1 \preceq_T v_2 \preceq_T \ldots \preceq_T v_n$ es un orden total compatible con \preceq_P

Ejemplo:



Conjunto bien ordenado

Definición 30

 (V, \preceq) es un conjunto bien ordenado $si \preceq es$ un orden total y cualquier subconjunto no vacío de V tiene siempre un mínimo.

Notas:

- (\mathbb{N}, \leq) es un conjunto bien ordenado.
- (\mathbb{Z}, \leq) y (\mathbb{Q}_+, \leq) no son conjuntos bien ordenados.
- Los conjuntos bien ordenados satisfacen el Principio de inducción.

Proposición 31 (Principio de inducción para conjuntos bien ordenados) Sea (V, \preceq) un conjunto bien ordenado. Entonces, la propiedad P se cumple para todos los elementos de V si y sólo si se satisfacen las condiciones:

- 1. Paso base: $P(v_0)$ es verdadera para el mínimo de V .
- 2. Paso de inducción: si P(w) es verdadera para todo $w \prec v$, entonces P(v) es verdadera.

Resumen: Tipos de relaciones

Relación	Reflexiva	Simétrica	Antisimétrica	Transitiva	
Equivalencia	SI	SI	NO	SI	
Orden	SI	NO	SI	SI	
Orden Total	SI	NO	SI	SI	Todo par es comparable
Bien ordenado	SI	NO	SI	SI	Todo subconjunto no vacío
					tiene mínimo

Relaciones

